Take advantage of a 100% OFF coupon code for the 'Matlab course for wireless communication engineering' course, created by Dr. Khaled Ramadan, available on Udemy.
This course, updated on April 01, 2025 and it is expired on April 02, 2025.
This course provides 3 hour(s) 30 minute(s) of expert-led training in English , designed to boost your Engineering skills.
Highly rated at 4.4-star stars from 139 reviews, it has already helped 12,388 students.
This exclusive coupon is shared by Anonymous,
at the price
44.99 $
0 $
Don’t miss this opportunity to level up your skills!
You can find the discounted coupon code for this course at the end of this article
This is course is designed for under and post graduate students associated to the electronics and communication engineering department. It has 10 introductions of 30 minutes, each introduction discusses the theoretical explanation and the simulated figures that obtained through the explanation of the course. This course saves many months of hard work.
Using the Matlab program, you will learn:
1-How to estimate the Bit-Error-Rate (BER) performance of different modulation schemes like BPSK, QPSK, 16QAM, 64QAM, and 256QAM over an Additive White Gaussian Noise (AWGN) channel?
2-How to generate and add a Rayleigh fading channel based on the Jakes model?
3-How to mitigate the Rayleigh fading channel effect using different linear equalizer schemes?
4-How to estimate the Bit-Error-Rate (BER) performance over Single-Input-Single-Output Orthogonal Frequency Division Multiplexing (SISO-OFDM) communication system over a Rayleigh fading channel?
5-How to extend this work for different Multiple-Input-Multiple-Output (MIMO) configurations like 2×2, and 3×3 MIMO-OFDM communication systems over a Rayleigh fading channel?
6-A general code for BER estimation in case of Nt×Nr configuration for OFDM communication system over a Rayleigh fading channel will be presented, where Nt, is the number of transmitting antennas, and Nr is the number of receiving antennas.
7-Finally, the BER estimation for Non-Orthogonal Multiple Access (NOMA), which used in the 5G communication systems will be presented.